Course Outline
Introduction
- Kubeflow on Azure vs on-premise vs on other public cloud providers
Overview of Kubeflow Features and Architecture
Overview of the Deployment Process
Activating an Azure Account
Preparing and Launching GPU-enabled Virtual Machines
Setting up User Roles and Permissions
Preparing the Build Environment
Selecting a TensorFlow Model and Dataset
Packaging Code and Frameworks into a Docker Image
Setting up a Kubernetes Cluster Using AKS
Staging the Training and Validation Data
Configuring Kubeflow Pipelines
Launching a Training Job.
Visualizing the Training Job in Runtime
Cleaning up After the Job Completes
Troubleshooting
Summary and Conclusion
Requirements
- An understanding of machine learning concepts.
- Knowledge of cloud computing concepts.
- A general understanding of containers (Docker) and orchestration (Kubernetes).
- Some Python programming experience is helpful.
- Experience working with a command line.
Audience
- Data science engineers.
- DevOps engineers interesting in machine learning model deployment.
- Infrastructure engineers interested in machine learning model deployment.
- Software engineers wishing to automate the integration and deployment of machine learning features with their application.
Delivery Options
Private Group Training
Our identity is rooted in delivering exactly what our clients need.
- Pre-course call with your trainer
- Customisation of the learning experience to achieve your goals -
- Bespoke outlines
- Practical hands-on exercises containing data / scenarios recognisable to the learners
- Training scheduled on a date of your choice
- Delivered online, onsite/classroom or hybrid by experts sharing real world experience
Private Group Prices RRP from £7600 online delivery, based on a group of 2 delegates, £2400 per additional delegate (excludes any certification / exam costs). We recommend a maximum group size of 12 for most learning events.
Contact us for an exact quote and to hear our latest promotions
Public Training
Please see our public courses
Testimonials (5)
It was very much what we asked for—and quite a balanced amount of content and exercises that covered the different profiles of the engineers in the company who participated.
Arturo Sanchez - INAIT SA
Course - Microsoft Azure Infrastructure and Deployment
I've got to try out resources that I've never used before.
Daniel - INIT GmbH
Course - Architecting Microsoft Azure Solutions
The Exercises
Khaled Altawallbeh - Accenture Industrial SS
Course - Azure Machine Learning (AML)
very friendly and helpful
Aktar Hossain - Unit4
Course - Building Microservices with Microsoft Azure Service Fabric (ASF)
the ML ecosystem not only MLFlow but Optuna, hyperops, docker , docker-compose